Meteorological Technology International
  • News
    • A-E
      • Agriculture
      • Automated Weather Stations
      • Aviation
      • Climate Measurement
      • Data
      • Developing Countries
      • Digital Applications
      • Early Warning Systems
      • Extreme Weather
    • G-P
      • Hydrology
      • Lidar
      • Lightning Detection
      • New Appointments
      • Nowcasting
      • Numerical Weather Prediction
      • Polar Weather
    • R-S
      • Radar
      • Rainfall
      • Remote Sensing
      • Renewable Energy
      • Satellites
      • Solar
      • Space Weather
      • Supercomputers
    • T-Z
      • Training
      • Transport
      • Weather Instruments
      • Wind
      • World Meteorological Organization
      • Meteorological Technology World Expo
  • Features
  • Online Magazines
    • April 2025
    • January 2025
    • September 2024
    • April 2024
    • Archive Issues
    • Subscribe Free!
  • Opinion
  • Videos
  • Supplier Spotlight
  • Expo
LinkedIn Twitter Facebook
  • Sign-up for Free Weekly E-Newsletter
  • Meet the Editors
  • Contact Us
  • Media Pack
LinkedIn Facebook
Subscribe
Meteorological Technology International
  • News
      • Agriculture
      • Automated Weather Stations
      • Aviation
      • Climate Measurement
      • Data
      • Developing Countries
      • Digital Applications
      • Early Warning Systems
      • Extreme Weather
      • Hydrology
      • Lidar
      • Lightning Detection
      • New Appointments
      • Nowcasting
      • Numerical Weather Prediction
      • Polar Weather
      • Radar
      • Rainfall
      • Remote Sensing
      • Renewable Energy
      • Satellites
      • Solar
      • Space Weather
      • Supercomputers
      • Training
      • Transport
      • Weather Instruments
      • Wind
      • World Meteorological Organization
      • Meteorological Technology World Expo
  • Features
  • Online Magazines
    1. April 2025
    2. January 2025
    3. September 2024
    4. April 2024
    5. January 2024
    6. September 2023
    7. April 2023
    8. Archive Issues
    9. Subscribe Free!
    Featured
    April 15, 2025

    In this Issue – April 2025

    By Web TeamApril 15, 2025
    Recent

    In this Issue – April 2025

    April 15, 2025

    In this Issue – January 2025

    December 13, 2024

    In this Issue – September 2024

    August 8, 2024
  • Opinion
  • Videos
  • Supplier Spotlight
  • Expo
Facebook LinkedIn
Subscribe
Meteorological Technology International
Climate Measurement

ECMWF project to improve transportation modeling of atmospheric composition tracers

Elizabeth BakerBy Elizabeth BakerDecember 12, 20236 Mins Read
Share LinkedIn Facebook Twitter Email
Share
LinkedIn Facebook Twitter Email

CATRINE, an EU-funded three-year project coordinated by ECMWF, will be launched in January 2024 to improve the numerical aspects of the transportation of atmospheric tracers – with an emphasis on long-lived greenhouse gases. It is to support an operational anthropogenic greenhouse gas emissions monitoring and verification support capacity (CO2MVS).

The project’s results will be in time for CO2MVS, which will come into operation in 2026 as part of the EU’s Copernicus Atmosphere Monitoring Service (CAMS) implemented by ECMWF. The aim is to improve the methods used to represent the transportation of atmospheric tracers through the wind. CATRINE will focus on improving mass conservation in ECMWF’s Integrated Forecasting System (IFS) and identifying other systematic errors in the various atmospheric transportation and mixing processes.

According to ECMWF, the goal of CO2MVS – to monitor the emissions of greenhouse gases caused by humans – is not very well supported by direct observations of the emissions. This is why the organization has highlighted the need for accurate information from different components of the Earth system. This includes observations from the surface and space, knowledge of the chemistry in the atmosphere and, crucially, an understanding of the transportation of greenhouse gases and other tracers in the atmosphere.

ECMWF pointed out that the two main long-lived greenhouse gases to which humans contribute are carbon dioxide (CO2) and methane (CH4). However, while learning about the sources of human-caused emissions, it is possible to track other tracers that are co-emitted. CATRINE will look at the atmospheric transportation of tracers.

“Knowledge of transportation allows us to study how tracers move and mix, and to estimate the surface fluxes of the tracers by tracing back the signals in the atmospheric CO2 and CH4 to the emissions and surface fluxes from the land and the oceans,” said Anna Agustí-Panareda, co-coordinator of CATRINE and an ECMWF scientist. The approach of estimating emissions and natural surface fluxes from atmospheric observations is known as atmospheric inversion modeling and is at the core of the CO2MVS. For this approach to work, the tracer transportation model needs to be accurate.

Agustí-Panareda added, “Currently we don’t know how well the IFS and other tracer transportation models used for atmospheric inversions perform in terms of the transportation of long-lived tracers such as CO2 and CH4. We want to establish whether there are any systematic errors, quantify those and better understand their origin.”

The first task is to assess the quality of the transportation of tracers in the IFS and other tracer transportation models used operationally in CAMS and other European operational centers. The next step will be to improve it as required. In the IFS, part of the problem lies with the advection scheme, in other words, the numerical method used to solve the partial differential equations that model the transportation of momentum, heat and mass in an atmospheric model.

“The semi-Lagrangian scheme of the IFS is accurate and very efficient in forecasting the weather,” said Michail Diamantakis, co-coordinator of CATRINE and a scientist at ECMWF. “But it has one weakness: it does not accurately conserve the mass of transported air constituents locally or globally.”

One question, addressed by some consortium partners in CATRINE, will thus be whether the transportation of tracers can be adjusted to reduce local mass conservation problems and other transportation errors. This is particularly hard in the case of CO2 and CH4 because of local point-source emissions, e.g. from power stations, industrial facilities or leaks.

“It all depends on the signal-to-error ratio,” said Agustí-Panareda. “The CO2 signal, for example, is very small compared with the water vapor signal, which means that our requirements for accuracy are much higher.”

Another area of work, pursued by other consortium partners, concerns the simulation of plumes that are much smaller than what the IFS can represent. These plumes are highly variable in size and magnitude depending on the atmospheric conditions, and they can emanate from different heights depending also on the source type.

The goal is to use very high-resolution local models to simulate the transportation, mixing and chemistry in these small-scale plumes as accurately as possible, and to try to find ways to simplify these processes to include them in a large-scale model.

Once the model has been improved, it will have to be evaluated. “That will not be easy because it is difficult to separate emissions from transportation in observations,” Agustí-Panareda commented. “One way of doing this is based on the knowledge that different tracers have different emission errors, but they all have similar transportation errors.”

Observations will be used to detect where systematic errors are particularly large and what the sources of uncertainty are. One of the challenges to be addressed by some consortium members is to come up with metrics to quantify the transportation errors and identify the specific processes that need to be improved in the various tracer transportation models used in CATRINE.

The work carried out in CATRINE is also expected to have some benefits for numerical weather prediction. “A better tracer transportation scheme will also improve the transportation of moisture, which is very important for weather prediction,” said Diamantakis. “This is true especially as the grid spacing becomes smaller toward the km scale.”

In addition, numerical weather prediction increasingly relies on considering the Earth system as a whole. For example, the water fluxes from vegetation can affect the formation of clouds above. “We are trying to have a representation that is oriented more toward the Earth system, and to understand how important the coupling of different processes is,” said Agustí-Panareda. “That could be important for forecasts at longer timescales and at very high resolutions.”

CATRINE is coordinated by ECMWF and includes seven other research institutes: the French Alternative Energies and Atomic Energy Commission (CEA); Météo-France; Wageningen University in the Netherlands; the Karlsruhe Institute of Technology in Germany; Helsinki University in Finland; the University of Reims in France; and the University of Freiburg in Germany.

An outreach activity to other groups working on similar problems is also envisaged. “It will be good to have a community exchange on what works and what doesn’t work, so we’d like to have an intercomparison project,” concluded Agustí-Panareda. “There will first be an internal intercomparison, and then we’ll extend it to the international community.”

Read more of the latest climate measurement updates from the meteorological technology industry, here.

Previous ArticleBiden-Harris Administration invests US$1m in advancing Arctic data management
Next Article VIDEO: Royal Meteorological Society highlights key steps forward at COP28

Read Similar Stories

Aviation

Somali Civil Aviation Authority implements MTG-based monitoring and forecasting system

July 3, 20251 Min Read
Climate Measurement

Air quality monitoring market to reach US$9.5bn by 2033

July 2, 20254 Mins Read
Climate Measurement

AI-powered wind speed model improves ocean weather forecasting

July 1, 20253 Mins Read
Latest News

University of Miami researcher develops AI model to track early signs of hurricane formation

July 11, 2025

INTERVIEW: University of Connecticut

July 10, 2025

Researchers use particle image velocimetry to reveal high-resolution ocean surface airflow dynamics

July 10, 2025

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Supplier Spotlights
  • Meteomatics AG
Latest Job Postings
  • smo

    • Ireland
    • Met Éireann
    • Full Time
    • Temporary
  • Senior HPC for Earth Sciences Team Leader (RE3)

    • Barcelona
    • Barcelona Supercomputing Center - Centro Nacional de Supercomputación
    • Full Time
Getting in Touch
  • Contact Us / Advertise
  • Meet the Editors
  • Download Media Pack
  • Free Weekly E-Newsletter
Our Social Channels
  • Facebook
  • LinkedIn
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Cookie Policy
  • Privacy Policy
  • Terms and Conditions
  • Notice and Takedown Policy

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the ...
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT
Powered by