Meteorological Technology International
  • News
    • A-E
      • Agriculture
      • Automated Weather Stations
      • Aviation
      • Climate Measurement
      • Data
      • Developing Countries
      • Digital Applications
      • Early Warning Systems
      • Extreme Weather
    • G-P
      • Hydrology
      • Lidar
      • Lightning Detection
      • New Appointments
      • Nowcasting
      • Numerical Weather Prediction
      • Polar Weather
    • R-S
      • Radar
      • Rainfall
      • Remote Sensing
      • Renewable Energy
      • Satellites
      • Solar
      • Space Weather
      • Supercomputers
    • T-Z
      • Training
      • Transport
      • Weather Instruments
      • Wind
      • World Meteorological Organization
      • Meteorological Technology World Expo
  • Features
  • Online Magazines
    • April 2025
    • January 2025
    • September 2024
    • April 2024
    • Archive Issues
    • Subscribe Free!
  • Opinion
  • Videos
  • Supplier Spotlight
  • Expo
LinkedIn Twitter Facebook
  • Sign-up for Free Weekly E-Newsletter
  • Meet the Editors
  • Contact Us
  • Media Pack
LinkedIn Facebook
Subscribe
Meteorological Technology International
  • News
      • Agriculture
      • Automated Weather Stations
      • Aviation
      • Climate Measurement
      • Data
      • Developing Countries
      • Digital Applications
      • Early Warning Systems
      • Extreme Weather
      • Hydrology
      • Lidar
      • Lightning Detection
      • New Appointments
      • Nowcasting
      • Numerical Weather Prediction
      • Polar Weather
      • Radar
      • Rainfall
      • Remote Sensing
      • Renewable Energy
      • Satellites
      • Solar
      • Space Weather
      • Supercomputers
      • Training
      • Transport
      • Weather Instruments
      • Wind
      • World Meteorological Organization
      • Meteorological Technology World Expo
  • Features
  • Online Magazines
    1. April 2025
    2. January 2025
    3. September 2024
    4. April 2024
    5. January 2024
    6. September 2023
    7. April 2023
    8. Archive Issues
    9. Subscribe Free!
    Featured
    April 15, 2025

    In this Issue – April 2025

    By Web TeamApril 15, 2025
    Recent

    In this Issue – April 2025

    April 15, 2025

    In this Issue – January 2025

    December 13, 2024

    In this Issue – September 2024

    August 8, 2024
  • Opinion
  • Videos
  • Supplier Spotlight
  • Expo
Facebook LinkedIn
Subscribe
Meteorological Technology International
Climate Measurement

Use of fossil fuels will see more than 40% of glacial mass disappear by 2100, warns study

Dan SymondsBy Dan SymondsJanuary 20, 20234 Mins Read
Share LinkedIn Facebook Twitter Email
Share
LinkedIn Facebook Twitter Email

A new international study led by Carnegie Mellon University (CMU) in Pittsburgh, Pennsylvania shows that the world could lose as much as 41% of its total glacier mass this century, or as little as 26%, depending on immediate climate change mitigation efforts.

The international team produced new projections of glacier mass loss through the century under different emissions scenarios. The projections were aggregated into global temperature-change scenarios to support adaptation and mitigation discussions, such as those at the recent United Nations Conference of the Parties (COP27).

The most recent Intergovernmental Panel on Climate Change (IPCC) report warned that policymakers have less than three years to act to avert catastrophic and irreversible changes to the world’s climate. The shared socioeconomic pathways (SSPs) they used to model future scenarios for climate change are based on factors like population, economic growth, education, urbanization and innovation. These new pathways illustrate a more complete picture of socioeconomic trends that could affect future greenhouse gas emissions.

Only recently have researchers been able to produce global predictions for total glacial mass change using the new SSPs. David Rounce, an assistant professor in CMU’s Department of Civil and Environmental Engineering, aggregated these future climate scenarios based on their increase in global mean temperature to evaluate the corresponding impacts associated with temperature change scenarios ranging from 1.5°C to 4°C. His model is also calibrated with an unprecedented amount of data, including individual mass-change observations for every glacier, and uses state-of-the-art calibration methods that require the use of supercomputers.

Rounce and his team found that in the SSPs with continued investment in fossil fuels, more than 40% of the glacial mass will be gone within the century, and more than 80% of glaciers by number could well disappear. Even in a best-case, low-emissions scenario, where the increase in global mean temperature is limited to 1.5°C relative to pre-industrial levels, more than 25% of glacial mass will be gone and nearly 50% of glaciers by number are projected to disappear. A majority of these lost glaciers are small (less than one square kilometer) by glacial standards, but their loss can negatively affect local hydrology, tourism, glacier hazards and cultural values.

Many processes govern how glaciers lose mass, and Rounce is working to advance how models account for different types of glaciers, including tidewater and debris-covered glaciers. Tidewater glaciers terminate in the ocean, which causes them to lose a lot of mass at this interface. Debris-covered glaciers are covered by sand, rocks and boulders. Prior work by Rounce has shown that the thickness and distribution of debris cover can have a positive or negative effect on glacial melt rates across an entire region, depending on the debris thickness. In this newest work, he found that accounting for these processes had relatively little impact on the global glacier projections but substantial differences in mass loss were found when analyzing individual glaciers.

Rounce’s work provides better context for regional glacier modeling, and he hopes it will spur climate policymakers to lower temperature-change goals beyond the 2.7°C mark that pledges from COP26 are projected to hit. Smaller glacial regions like Central Europe, low latitudes like the Andes, and the upper areas of North America will be disproportionately affected by temperatures rising more than 2°C. At a 3°C rise, these glacial regions almost completely disappear.

Rounce notes that glaciers take a long time to respond to climate change. He describes the glaciers as extremely slow-moving rivers. Cutting emissions today will not remove previously emitted greenhouse gases, nor can it instantly halt the inertia they contribute to climate change, meaning even a complete halt in emissions would still take between 30 and 100 years to be reflected in glacier mass loss rates.

To view the Global glacier change in the 21st century: Every increase in temperature matters study, click here.

Previous ArticleWEF initiative combines AI with satellite and weather data to mitigate wildfire risk
Next Article NERC marine robots to explore ocean CO2 storage cycle

Read Similar Stories

Climate Measurement

Omaha’s National Weather Service office resumes twice-daily balloon launches

May 7, 20252 Mins Read
Climate Measurement

University of Oxford researchers investigate use of seismic signals in volcanic eruption prediction

May 6, 20254 Mins Read
Climate Measurement

Sun Yat-Sen University launches climate model

April 28, 20252 Mins Read
Latest News

Vaisala unveils helideck monitoring software for offshore operations

May 9, 2025

WMO strengthens Nepal’s early warning services

May 8, 2025

Omaha’s National Weather Service office resumes twice-daily balloon launches

May 7, 2025

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Supplier Spotlights
  • ROTRONIC AG
Latest Job Postings
  • Researcher/Engineer to support data-based weather forecasting (R2/RE2)

    • Barcelona
    • Barcelona Supercomputing Center - Centro Nacional de Supercomputación
    • Full Time
  • Climate Services Team Leader (R3/R4)

    • Barcelona
    • Barcelona Supercomputing Center - Centro Nacional de Supercomputación
    • Full Time
Getting in Touch
  • Contact Us / Advertise
  • Meet the Editors
  • Download Media Pack
  • Free Weekly E-Newsletter
Our Social Channels
  • Facebook
  • LinkedIn
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Cookie Policy
  • Privacy Policy
  • Terms and Conditions
  • Notice and Takedown Policy

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the ...
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT
Powered by