Meteorological Technology International
  • News
    • A-E
      • Agriculture
      • Automated Weather Stations
      • Aviation
      • Climate Measurement
      • Data
      • Developing Countries
      • Digital Applications
      • Early Warning Systems
      • Extreme Weather
    • G-P
      • Hydrology
      • Lidar
      • Lightning Detection
      • New Appointments
      • Nowcasting
      • Numerical Weather Prediction
      • Polar Weather
    • R-S
      • Radar
      • Rainfall
      • Remote Sensing
      • Renewable Energy
      • Satellites
      • Solar
      • Space Weather
      • Supercomputers
    • T-Z
      • Training
      • Transport
      • Weather Instruments
      • Wind
      • World Meteorological Organization
      • Meteorological Technology World Expo
  • Features
  • Online Magazines
    • April 2025
    • January 2025
    • September 2024
    • April 2024
    • Archive Issues
    • Subscribe Free!
  • Opinion
  • Videos
  • Supplier Spotlight
  • Expo
LinkedIn Twitter Facebook
  • Sign-up for Free Weekly E-Newsletter
  • Meet the Editors
  • Contact Us
  • Media Pack
LinkedIn Facebook
Subscribe
Meteorological Technology International
  • News
      • Agriculture
      • Automated Weather Stations
      • Aviation
      • Climate Measurement
      • Data
      • Developing Countries
      • Digital Applications
      • Early Warning Systems
      • Extreme Weather
      • Hydrology
      • Lidar
      • Lightning Detection
      • New Appointments
      • Nowcasting
      • Numerical Weather Prediction
      • Polar Weather
      • Radar
      • Rainfall
      • Remote Sensing
      • Renewable Energy
      • Satellites
      • Solar
      • Space Weather
      • Supercomputers
      • Training
      • Transport
      • Weather Instruments
      • Wind
      • World Meteorological Organization
      • Meteorological Technology World Expo
  • Features
  • Online Magazines
    1. April 2025
    2. January 2025
    3. September 2024
    4. April 2024
    5. January 2024
    6. September 2023
    7. April 2023
    8. Archive Issues
    9. Subscribe Free!
    Featured
    April 15, 2025

    In this Issue – April 2025

    By Web TeamApril 15, 2025
    Recent

    In this Issue – April 2025

    April 15, 2025

    In this Issue – January 2025

    December 13, 2024

    In this Issue – September 2024

    August 8, 2024
  • Opinion
  • Videos
  • Supplier Spotlight
  • Expo
Facebook LinkedIn
Subscribe
Meteorological Technology International
Extreme Weather

Damaging thunderstorm winds increasing in the central USA, NCAR finds

Elizabeth BakerBy Elizabeth BakerNovember 3, 20234 Mins Read
Share LinkedIn Facebook Twitter Email
Photo: UCAR
Share
LinkedIn Facebook Twitter Email

According to research by the US National Science Foundation (NSF) National Center for Atmospheric Research (NCAR), destructive winds that flow out of thunderstorms in the central USA are becoming more widespread with warming temperatures.

The study, published in Nature Climate Change, shows that the central USA experienced a fivefold increase in the geographic area affected by damaging thunderstorm straight-line winds in the past 40 years. The research uses a combination of meteorological observations, high-resolution computer modeling, and analyses of fundamental physical laws to estimate the changes in the winds, which are so short-lived and localized that they often are not picked up by weather stations. The work was funded by NSF, which is NCAR’s sponsor, and by the MIT Climate Grand Challenge on Weather and Climate Extremes.

“Thunderstorms are causing more and more of these extreme wind events,” said NCAR scientist Andreas Prein, the author of the study. “These gusts that suddenly go from no wind at all to gusts of 60 to 80mph can have very damaging impacts on buildings, power grids and even human safety.”

Capturing small-scale events
Straight-line winds are caused by powerful downdrafts that flow from the base of thunderstorms. The National Weather Service (NWS) classifies such winds as damaging if they exceed 50kts, or about 57mph. The winds likely cause about US$2.5bn in damage annually in the USA, based on insurance industry estimates. In 2020, a particularly powerful derecho – a widespread, straight-line windstorm associated with fast-moving thunderstorms – caused an estimated US$11bn in damage in the Midwest.

Scientists have long been interested in the impact of climate change on straight-line winds. Until now, however, simulations of climate conditions run on computer models have been too coarse to capture such brief and small-scale events. Further clouding the picture, weather observations appear to show that there are more periods of little to no wind worldwide (a phenomenon known as global stilling), even though, paradoxically, maximum wind speeds can rise simultaneously.

To determine if damaging straight-line winds are becoming more widespread, Prein turned to a high-resolution, computer model simulation that NCAR scientists recently produced in collaboration with the US Geological Survey. The advanced simulation is named CONUS404 because it simulates climate and hydrological conditions at a resolution of 4km (2.5 miles) across the continental USA, or CONUS, over the past 40-plus years.

Prein focused on summertime conditions in the central USA, a global hotspot for straight-line winds. The high-resolution modeling enabled him to get a much more fine-grained picture of winds than relying on sparse atmospheric observations, and to expand his analysis from 95 weather stations to 109,387 points in the simulation. The simulation showed that the area affected by straight-line winds has increased in the last 40 years by about 4.8 times.

Prein verified the accuracy of the simulation by comparing it with measurements of selected winds in the past, such as the 2020 derecho. His analysis showed that the CONUS404 simulations were reliably capturing straight-line winds, as opposed to previous, coarser simulations that failed to capture many such events.

This left the question of whether climate change could be responsible for the increase in winds. Prein approached this question by analyzing the thermodynamics of straight-line winds and how actual wind events such as the 2020 derecho would have been affected by different atmospheric conditions based on first-order physical principles.

Straight-line winds result when rain and hail at high altitudes evaporate and cool the ambient air, which then plummets and, at the surface, spawns intense winds that rush outward. In studying this process, Prein’s calculations showed that climate change is likely altering the picture by increasing the temperature difference between the cool air in downdrafts and the warm surrounding air. This larger temperature difference lets the cold air descend even faster, making it more likely for a thunderstorm to generate damaging winds.

“As these findings show, it is crucial to incorporate the increasing risk of straight-line winds when planning for the impacts of climate change so we can ensure the future resiliency of infrastructure to this frequently neglected peril,” Prein said.

Read more of the latest wind updates from the meteorological technology industry, here.

Previous ArticleVaisala reshapes its weather and environment business in Finland
Next Article VIDEO: Saildrone and NOAA release footage from Hurricane Tammy

Read Similar Stories

Climate Measurement

11th SOFF Steering Committee moves to mobilize US$200m

May 29, 20253 Mins Read
Numerical Weather Prediction

University of Chicago analyzes AI’s ability to predict unprecedented weather events

May 27, 20255 Mins Read
Climate Measurement

NASA selects University of Texas at Arlington researcher for wildfire smoke warning system

May 23, 20253 Mins Read
Latest News

11th SOFF Steering Committee moves to mobilize US$200m

May 29, 2025

NOC deploys robots to investigate ocean’s biological carbon pump

May 28, 2025

Coronal adaptive optics reveal most detailed coronal images to date

May 28, 2025

Receive breaking stories and features in your inbox each week, for free


Enter your email address:


Supplier Spotlights
  • Adolf Thies GmbH & Co. KG
Latest Job Postings
  • Postdoctoral researcher position on land surface and vegetation modelling (R2)

    • Barcelona
    • Barcelona Supercomputing Center - Centro Nacional de Supercomputación
    • Full Time
  • HPC Engineer for Earth Sciences applications (RE1/2)

    • Barcelona
    • Barcelona Supercomputing Center - Centro Nacional de Supercomputación
    • Full Time
Getting in Touch
  • Contact Us / Advertise
  • Meet the Editors
  • Download Media Pack
  • Free Weekly E-Newsletter
Our Social Channels
  • Facebook
  • LinkedIn
© 2025 UKi Media & Events a division of UKIP Media & Events Ltd
  • Cookie Policy
  • Privacy Policy
  • Terms and Conditions
  • Notice and Takedown Policy

Type above and press Enter to search. Press Esc to cancel.

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the ...
Necessary
Always Enabled

Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.

CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Performance

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Others

Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.

SAVE & ACCEPT
Powered by